Learning Chinese Word Embeddings With Words and Subcharacter N-Grams

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring Word Embeddings and Character N-Grams for Author Clustering

We presented our system for PAN 2016 Author Clustering task. Our software used simple character n-grams to represent the document collection. We then ran K-Means clustering optimized using the Silhouette Coefficient. Our system yields competitive results and required only a short runtime. Character n-grams can capture a wide range of information, making them effective for authorship attribution...

متن کامل

Joint Embeddings of Chinese Words, Characters, and Fine-grained Subcharacter Components

Word embeddings have attracted much attention recently. Different from alphabetic writing systems, Chinese characters are often composed of subcharacter components which are also semantically informative. In this work, we propose an approach to jointly embed Chinese words as well as their characters and fine-grained subcharacter components. We use three likelihoods to evaluate whether the conte...

متن کامل

Beyond Word N-Grams

We describe, analyze, and experimentally evaluate a new probabilistic model for wordsequence prediction in natural languages, based on prediction suffi~v trees (PSTs). By using efficient data structures, we extend the notion of PST to unbounded vocabularies. We also show how to use a Bayesian approach based on recursive priors over all possible PSTs to efficiently maintain tree mixtures. These ...

متن کامل

Improved Learning of Chinese Word Embeddings with Semantic Knowledge

While previous studies show that modeling the minimum meaningbearing units (characters or morphemes) benefits learning vector representations of words, they ignore the semantic dependencies across these units when deriving word vectors. In this work, we propose to improve the learning of Chinese word embeddings by exploiting semantic knowledge. The basic idea is to take the semantic knowledge a...

متن کامل

Improving Word Alignment of Rare Words with Word Embeddings

We address the problem of inducing word alignment for language pairs by developing an unsupervised model with the capability of getting applied to other generative alignment models. We approach the task by: i) proposing a new alignment model based on the IBM alignment model 1 that uses vector representation of words, and ii) examining the use of similar source words to overcome the problem of r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2019

ISSN: 2169-3536

DOI: 10.1109/access.2019.2908014